Oftentimes in practice, the observed process changes statistical properties at an unknown point in time and the duration of a change is substantially finite, in which case one says that the change is intermittent or transient. We provide an overview of existing approaches for intermittent change detection and advocate in favor of a particular setting driven by the intermittent nature of the change. We propose a novel optimization criterion that is more appropriate for many applied areas such as the detection of threats in physical-computer systems, near-Earth space informatics, epidemiology, pharmacokinetics, etc. We argue that controlling the local conditional probability of a false alarm, rather than the familiar average run length to a false alarm, and maximizing the local conditional probability of detection is a more reasonable approach versus a traditional quickest change detection approach that requires minimizing the expected delay to detection. We adopt the maximum likelihood (ML) approach with respect to the change duration and show that several commonly used detection rules (CUSUM, window-limited CUSUM, and FMA) are equivalent to the ML-based stopping times. We discuss how to choose design parameters for these rules and provide a comprehensive simulation study to corroborate intuitive expectations.


翻译:通常在实际应用中,观察到的过程在未知的时间点上改变了统计特性,并且改变的持续时间显著有限,此时称这种变化是间歇性或短暂性的。我们概述了现有的间歇性变化检测方法,并支持一种由间歇性变化驱动的特定设置。我们提出了一种新颖的优化准则,它在许多应用领域中更为合适,如检测物理计算系统、近地空间信息学、流行病学、药物动力学等。我们认为控制误警率的局部条件概率,而不是常见的平均虚警率,并最大化检测的局部条件概率,是一个相对合理的方法,而不是采用传统的最快变化检测方法,该方法需要最小化检测的期望延迟。我们采用最大似然(ML)方法来估计变化持续时间,并显示了几个常用的检测规则(CUSUM、窗口限制CUSUM和FMA)等价于基于ML的停止时间。我们讨论了这些规则的设计参数如何选择,并提供了全面的仿真研究来证实直觉预期。

0
下载
关闭预览

相关内容

【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
106+阅读 · 2022年3月20日
专知会员服务
44+阅读 · 2021年5月19日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
62+阅读 · 2020年3月4日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
106+阅读 · 2022年3月20日
专知会员服务
44+阅读 · 2021年5月19日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
62+阅读 · 2020年3月4日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员