Oftentimes in practice, the observed process changes statistical properties at an unknown point in time and the duration of a change is substantially finite, in which case one says that the change is intermittent or transient. We provide an overview of existing approaches for intermittent change detection and advocate in favor of a particular setting driven by the intermittent nature of the change. We propose a novel optimization criterion that is more appropriate for many applied areas such as the detection of threats in physical-computer systems, near-Earth space informatics, epidemiology, pharmacokinetics, etc. We argue that controlling the local conditional probability of a false alarm, rather than the familiar average run length to a false alarm, and maximizing the local conditional probability of detection is a more reasonable approach versus a traditional quickest change detection approach that requires minimizing the expected delay to detection. We adopt the maximum likelihood (ML) approach with respect to the change duration and show that several commonly used detection rules (CUSUM, window-limited CUSUM, and FMA) are equivalent to the ML-based stopping times. We discuss how to choose design parameters for these rules and provide a comprehensive simulation study to corroborate intuitive expectations.
翻译:通常在实际应用中,观察到的过程在未知的时间点上改变了统计特性,并且改变的持续时间显著有限,此时称这种变化是间歇性或短暂性的。我们概述了现有的间歇性变化检测方法,并支持一种由间歇性变化驱动的特定设置。我们提出了一种新颖的优化准则,它在许多应用领域中更为合适,如检测物理计算系统、近地空间信息学、流行病学、药物动力学等。我们认为控制误警率的局部条件概率,而不是常见的平均虚警率,并最大化检测的局部条件概率,是一个相对合理的方法,而不是采用传统的最快变化检测方法,该方法需要最小化检测的期望延迟。我们采用最大似然(ML)方法来估计变化持续时间,并显示了几个常用的检测规则(CUSUM、窗口限制CUSUM和FMA)等价于基于ML的停止时间。我们讨论了这些规则的设计参数如何选择,并提供了全面的仿真研究来证实直觉预期。