Two new omnibus tests of uniformity for data on the hypersphere are proposed. The new test statistics leverage closed-form expressions for orthogonal polynomials, feature tuning parameters, and are related to a "smooth maximum" function and the Poisson kernel. We obtain exact moments of the test statistics under uniformity and rotationally symmetric alternatives, and give their null asymptotic distributions. We consider approximate oracle tuning parameters that maximize the power of the tests against generic alternatives and provide tests that estimate oracle parameters through cross-validated procedures while maintaining the significance level. Numerical experiments explore the effectiveness of null asymptotic distributions and the accuracy of inexpensive approximations of exact null distributions. A simulation study compares the powers of the new tests with other tests of the Sobolev class, showing the benefits of the former. The proposed tests are applied to the study of the (seemingly uniform) nursing times of wild polar bears.
翻译:本文提出了两个关于超球面上数据均匀性的新的全样本检验。新的检验统计量利用正交多项式的闭式表达式、特征调节参数,并且与“平滑最大”函数和泊松核有关。我们获得了均匀性和旋转对称替代假设下测试统计量的精确矩,并给出了它们的零渐近分布。我们考虑了近似的oracle调节参数,这些参数在抵抗常规替代假设的能力方面最大化测试的功率,并提供通过交叉验证过程估计oracle参数的测试方法,同时保持了统计显著性水平。数值实验探讨了零渐近分布的有效性和精确零分布的廉价近似的准确性。模拟研究比较了新测试与Sobolev类测试的功率,证明前者的优势。提出的测试方法被应用于研究野生北极熊产科护理时间的均匀性。