This paper proposes a novel family of geostatistical models to account for features that cannot be properly accommodated by traditional Gaussian processes. The family is specified hierarchically and combines the infinite-dimensional dynamics of Gaussian processes with that of any multivariate continuous distribution. This combination is stochastically defined through a latent Poisson process and the new family is called the Poisson-Gaussian Mixture Process - POGAMP. Whilst the attempt of defining geostatistical processes by assigning some arbitrary continuous distribution to be the finite-dimension distributions usually leads to non-valid processes, the finite-dimensional distributions of the POGAMP can be arbitrarily close to any continuous distribution and still define a valid process. Formal results to establish the existence and some important properties of the POGAMP, such as absolute continuity with respect to a Gaussian process measure, are provided. Also, an MCMC algorithm is carefully devised to perform Bayesian inference when the POGAMP is discretely observed in some space domain.


翻译:本文提出了一种新型地质统计模型族,以解决传统高斯过程无法准确包容的特征问题。该模型族通过同时使用高斯过程和任何多元连续分布的无限维动力学,采用层次模型方式进行规范。此组合通过潜在泊松过程实现随机定义,新的模型族称为泊松高斯混合过程 - POGAMP。尽管在地质统计过程中为有限维分布分配任意连续分布往往导致非有效过程,但 POGAMP 的有限维分布可以任意接近任何连续分布,并仍定义有效过程。本文提供了正式结果以建立 POGAMP 的存在和一些重要属性,例如相对于高斯过程度量的绝对连续性。同时,精心设计了 MCMC算法,在某些空间域中离散观察 POGAMP 时进行贝叶斯推理。

0
下载
关闭预览

相关内容

高斯过程(Gaussian Process, GP)是概率论和数理统计中随机过程(stochastic process)的一种,是一系列服从正态分布的随机变量(random variable)在一指数集(index set)内的组合。 高斯过程中任意随机变量的线性组合都服从正态分布,每个有限维分布都是联合正态分布,且其本身在连续指数集上的概率密度函数即是所有随机变量的高斯测度,因此被视为联合正态分布的无限维广义延伸。高斯过程由其数学期望和协方差函数完全决定,并继承了正态分布的诸多性质
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
神经网络高斯过程 (Neural Network Gaussian Process)
PaperWeekly
0+阅读 · 2022年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
神经网络高斯过程 (Neural Network Gaussian Process)
PaperWeekly
0+阅读 · 2022年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员