Few-shot learning allows machines to classify novel classes using only a few labeled samples. Recently, few-shot segmentation aiming at semantic segmentation on low sample data has also seen great interest. In this paper, we propose a learnable module that can be placed on top of existing segmentation networks for performing few-shot segmentation. This module, called the task-adaptive feature transformer (TAFT), linearly transforms task-specific high-level features to a set of task agnostic features well-suited to conducting few-shot segmentation. The task-conditioned feature transformation allows an effective utilization of the semantic information in novel classes to generate tight segmentation masks. We also propose a semantic enrichment (SE) module that utilizes a pixel-wise attention module for high-level feature and an auxiliary loss from an auxiliary segmentation network conducting the semantic segmentation for all training classes. Experiments on PASCAL-$5^i$ and COCO-$20^i$ datasets confirm that the added modules successfully extend the capability of existing segmentators to yield highly competitive few-shot segmentation performances.
翻译:微小的学习使机器能够仅使用少数标签样本对新类进行分类。 最近, 以低样本数据中的语义分解为目的的微小分解也引起了极大的兴趣。 在本文中, 我们提议了一个可学习模块, 可以放在现有分解网络的顶部, 用于进行微小分解。 这个模块称为任务适应性地物变压器( TAFT), 线性地将特定任务高层次特征转换为一套任务感知性特征, 适合进行微小分解。 任务条件特征转换使得能够有效利用新类中的语义信息, 产生紧密分解面罩。 我们还提议了一个语义浓缩模块, 利用一个像素的注意模块, 用于高级特性和辅助分解网络的辅助性损失, 为所有培训班进行语义分解。 实验PASAL-5美元和CO-20美元的数据设置证实, 增加的模块成功地扩大了现有分解器的能力, 产生具有高度竞争性的少数分解分解性表现。