项目名称: 基于免疫机制的无线传感器网络攻击协同检测研究与设计

项目编号: No.61502423

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 其他

项目作者: 陈晋音

作者单位: 浙江工业大学

项目金额: 17万元

中文摘要: 随着无线传感器网络(WSN)普及,其安全问题的研究成为热点。针对WSN的节点资源受限和网络攻击检测率低的特点,本项目深入研究基于生物免疫机制的攻击协同检测模型和自适应检测器培育、更新算法,首先提出了资源受限节点和云端免疫中心协同检测模型:云端数据中心设计了基于生命周期、匹配区域、自身半径学习模型的自适应检测器,实现自适应检测算法;节点端实现基于重叠率估计模型的快速攻击检测。其次,提出节点终端检测器增量式IRsync更新算法,提高WSN节点在能量受限下的检测器更新能力,并建立基于隐马尔科夫链的节点剩余电量预测模型,提高节点终端的检测效率。最终搭建云端服务中心与WSN协同攻击检测系统原型,实现面向WSN的网络攻击稳定高效检测。

中文关键词: 人工免疫;;攻击协同检测;无线传感器网络;自适应检测器;轻量级

英文摘要: With the wider application of wireless sensor network (WSN), its security problem has become a research focus of WSN area. Aiming at WSN node limited energy and low efficiency network detection rate, a cooperative detection model combining local node and cloud immune center, self-adaptive detector maturation and update algorithms are brought up in this proposal. In cloud data center, self-adaptive detectors are applied to realize online detection based on life-cycle, matching threshold and self half-learning model. While in each node, fast attack detection is accomplished based on overlap-evaluation model. Secondly,detector incremental updating algorithm named IRsync algorithm is proposed to improve detector updating efficiency. A Hidden Markov Model for node energy prediction model, a light-weight attack detection algorithm is designed. Finally a cloud data center and WSN cooperative attack detection system demo is established to accomplish the task of high efficient network attack detection for WSN.

英文关键词: artificial immune; attack cooperative detection ;wireless sensor network;self-adaptive detector;light-weighted

成为VIP会员查看完整内容
0

相关内容

对抗机器学习在网络入侵检测领域的应用
专知会员服务
33+阅读 · 2022年1月4日
图对抗防御研究进展
专知会员服务
38+阅读 · 2021年12月13日
专知会员服务
38+阅读 · 2021年9月28日
专知会员服务
64+阅读 · 2021年5月3日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月11日
GCN如何并行化?分布式图卷积神经网路,13页pdf
专知会员服务
34+阅读 · 2020年7月20日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
对抗机器学习在网络入侵检测领域的应用
面向云端融合的分布式计算技术研究进展与趋势
中国计算机学会
19+阅读 · 2018年11月27日
已删除
将门创投
10+阅读 · 2018年5月2日
基础 | 基于注意力机制的seq2seq网络
黑龙江大学自然语言处理实验室
16+阅读 · 2018年3月7日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关VIP内容
对抗机器学习在网络入侵检测领域的应用
专知会员服务
33+阅读 · 2022年1月4日
图对抗防御研究进展
专知会员服务
38+阅读 · 2021年12月13日
专知会员服务
38+阅读 · 2021年9月28日
专知会员服务
64+阅读 · 2021年5月3日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月11日
GCN如何并行化?分布式图卷积神经网路,13页pdf
专知会员服务
34+阅读 · 2020年7月20日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
对抗机器学习在网络入侵检测领域的应用
面向云端融合的分布式计算技术研究进展与趋势
中国计算机学会
19+阅读 · 2018年11月27日
已删除
将门创投
10+阅读 · 2018年5月2日
基础 | 基于注意力机制的seq2seq网络
黑龙江大学自然语言处理实验室
16+阅读 · 2018年3月7日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员