Heterogeneous information networks(HINs) become popular in recent years for its strong capability of modelling objects with abundant information using explicit network structure. Network embedding has been proved as an effective method to convert information networks into lower-dimensional space, whereas the core information can be well preserved. However, traditional network embedding algorithms are sub-optimal in capturing rich while potentially incompatible semantics provided by HINs. To address this issue, a novel meta-path-based HIN representation learning framework named mSHINE is designed to simultaneously learn multiple node representations for different meta-paths. More specifically, one representation learning module inspired by the RNN structure is developed and multiple node representations can be learned simultaneously, where each representation is associated with one respective meta-path. By measuring the relevance between nodes with the designed objective function, the learned module can be applied in downstream link prediction tasks. A set of criteria for selecting initial meta-paths is proposed as the other module in mSHINE which is important to reduce the optimal meta-path selection cost when no prior knowledge of suitable meta-paths is available. To corroborate the effectiveness of mSHINE, extensive experimental studies including node classification and link prediction are conducted on five real-world datasets. The results demonstrate that mSHINE outperforms other state-of-the-art HIN embedding methods.


翻译:近些年来,由于利用明确的网络结构建立大量信息的模拟物体的强大能力,异质信息网络(HINs)近年来变得很受欢迎。网络嵌入已被证明是将信息网络转换为低维空间的有效方法,而核心信息则可得到妥善保存。然而,传统的网络嵌入算法在捕捉HINs提供的丰富而可能不兼容的语义时是次优化的。为解决这一问题,一个名为 mSHIN的新颖的基于超正向HIN代表学习框架旨在同时学习不同元路径的多节点表示。更具体地说,开发了一个受 RNN 结构启发的代表学习模块,可以同时学习多个节点表示,其中每个代表与一个相应的元路径相关。通过测量节点与设计目标功能的相关性,学习的模块可以应用于下游链接的预测任务。在 mSHINENE中提出了一套选择初始元路径的标准,作为MSHINENE的其他模块,这对于降低最佳的元路径选择成本非常重要,而以前没有适当的元路径的知识。在不掌握任何适当的元路径的情况下,因此可以同时开发一个代表模块,同时学习多个节点表,可以同时学习,同时学习,同时学习,可以同时学习多节表,同时学习,同时学习,同时学习,可以同时学习,同时学习,每个代表,每个代表,每个代表。通过每个代表,每个代表的每个代表都与一个不同的元路径。通过一个元路径。通过测量,通过测量,通过MSHIN-SHIN-hIN 测试方法,通过一个不同的模式,通过一个不同的模式,通过测算出真实的模型,从而验证算出真实的路径。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关VIP内容
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员