Network embedding (or graph embedding) has been widely used in many real-world applications. However, existing methods mainly focus on networks with single-typed nodes/edges and cannot scale well to handle large networks. Many real-world networks consist of billions of nodes and edges of multiple types and each node is associated with different attributes. In this paper, we formalize the problem of embedding learning for the Attributed Multiplex Heterogeneous Network and propose a unified framework to address this problem. The framework supports both transductive and inductive learning. We also give the theoretical analysis of the proposed framework, showing its connection with previous works and proving its better generalization ability. We conduct systematical evaluations for the proposed framework on four different genres of challenging datasets: Amazon, YouTube, Twitter, and Alibaba dataset. Experimental results demonstrate that with the learned embeddings from the proposed framework, we can achieve statistically significant improvements (e.g., 5.99-28.23% lift by F1 scores; p<<0.01, t-test) over previous state-of-the-arts for link prediction. The framework has also been successfully deployed on the recommendation system of a worldwide leading E-Commerce company Alibaba. Results of the offline A/B tests on product recommendation further confirm the effectiveness and efficiency of the framework in practice.


翻译:网络嵌入(或图形嵌入)在许多现实世界应用中被广泛使用。然而,现有方法主要侧重于使用单一型节点/前沿的网络,无法很好地处理大型网络。许多真实世界网络由数十亿个节点和多类型边缘组成,每个节点都与不同属性相关。在本文中,我们正式确定了为属性多氧化异质网络嵌入学习的问题,并提出了解决这一问题的统一框架。框架支持转化和感化学习。我们还对拟议框架进行理论分析,展示其与以往工作的联系,并证明它具有更好的普及能力。我们对挑战性数据集的四个不同类型(亚马逊、YouTube、Twitter和Alibaba数据集)的拟议框架进行了系统评价。实验结果显示,通过从拟议框架中学到的嵌入,我们可以在统计上实现重大改进(例如5.99-28.23%由F1评分提升;p ⁇ 0.01, 测试)超过以往的状态,显示其与以往工程的联系能力,并证明它更具有更好的普及能力。我们还成功地评估了四个不同式的、具有挑战性的数据集:亚马、You、You、You、You、You、Alib、A、Alib、Alical的测试框架已经成功测试。框架还成功测试了对公司、Elib的系统进一步测试。

4
下载
关闭预览

相关内容

在计算机网络中,异构网络是一种连接计算机和其他设备的网络,其中操作系统和协议有显著差异。例如,将基于微软Windows和Linux的个人计算机与苹果Macintosh计算机连接起来的局域网(LANs)是异构的。异构网络也被用于使用不同接入技术的无线网络中。例如,通过无线局域网提供服务并在切换到蜂窝网络时能够维持服务的无线网络称为无线异构网络。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
4+阅读 · 2019年1月14日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员