Autonomous navigation in crowded spaces poses a challenge for mobile robots due to the highly dynamic, partially observable environment. Occlusions are highly prevalent in such settings due to a limited sensor field of view and obstructing human agents. Previous work has shown that observed interactive behaviors of human agents can be used to estimate potential obstacles despite occlusions. We propose integrating such social inference techniques into the planning pipeline. We use a variational autoencoder with a specially designed loss function to learn representations that are meaningful for occlusion inference. This work adopts a deep reinforcement learning approach to incorporate the learned representation for occlusion-aware planning. In simulation, our occlusion-aware policy achieves comparable collision avoidance performance to fully observable navigation by estimating agents in occluded spaces. We demonstrate successful policy transfer from simulation to the real-world Turtlebot 2i. To the best of our knowledge, this work is the first to use social occlusion inference for crowd navigation.
翻译:由于高度动态的、部分可观测的环境,拥挤空间的自主导航对移动机器人构成挑战。在这种环境中,封闭现象非常普遍,因为感官视野有限,阻碍人类物剂。先前的工作表明,尽管有隔热性,但人类物剂观察到的交互行为可以用来估计潜在的障碍。我们提议将这种社会推导技术纳入规划管道。我们使用一个具有专门设计损失功能的变式自动编码器,以学习对排斥感推导有实际意义的表达。这项工作采用了一种深层强化学习方法,以纳入隐蔽意识规划的学习表现。在模拟中,我们的隐蔽意识政策实现了类似的避免碰撞性能,通过估计隐蔽空间的物剂完全可观测航行。我们展示了从模拟到真实世界海龟机器人2i的成功政策转移。根据我们的知识,这项工作首先利用社会隔离感推引引引力进行人群导航。