This paper presents a novel method to control humanoid robot dynamic loco-manipulation with multiple contact modes via Multi-contact Model Predictive Control (MPC) framework. In this framework, we proposed a multi-contact dynamics model that can represent different contact modes in loco-manipulation (e.g., hand contact with object and foot contacts with ground). The proposed dynamics model simplifies the object dynamics as external force applied to the system (external force model) to ensure the simplicity and feasibility of the MPC problem. In numerical validations, our Multi-contact MPC framework only needs contact timings of each task and desired states to give MPC the knowledge of changes in contact modes in the prediction horizons in loco-manipulation. The proposed framework can control the humanoid robot to complete multi-tasks dynamic loco-manipulation applications such as efficiently picking up and dropping off objects while turning and walking.
翻译:本文介绍了通过多接触模型预测控制框架(MPC)控制多接触模式的人类机器人动态遥控器的新颖方法。 在这一框架内,我们提出了一个多接触动态模型,可以代表 Loco 管理中的不同接触模式(例如与对象的手接触和与地面的脚接触)。拟议的动态模型将物体动态作为外部力量简化,用于系统(外部力量模型),以确保多接触模式问题的简单性和可行性。在数字验证中,我们的多接触组合组合控制框架只需要每项任务的联系时间,并期望各州向 MPC 提供远程控制中预测地平线中接触模式变化的知识。 拟议的框架可以控制人类机器人完成多任务动态操作程序,比如在旋转和行走时有效地接收和丢弃物体。