Model-based reinforcement learning (MBRL) is recognized with the potential to be significantly more sample efficient than model-free RL. How an accurate model can be developed automatically and efficiently from raw sensory inputs (such as images), especially for complex environments and tasks, is a challenging problem that hinders the broad application of MBRL in the real world. In this work, we propose a sensing-aware model-based reinforcement learning system called SAM-RL. Leveraging the differentiable physics-based simulation and rendering, SAM-RL automatically updates the model by comparing rendered images with real raw images and produces the policy efficiently. With the sensing-aware learning pipeline, SAM-RL allows a robot to select an informative viewpoint to monitor the task process. We apply our framework to real-world experiments for accomplishing three manipulation tasks: robotic assembly, tool manipulation, and deformable object manipulation. We demonstrate the effectiveness of SAM-RL via extensive experiments. Supplemental materials and videos are available on our project webpage at https://sites.google.com/view/sam-rl.
翻译:以模型为基础的强化学习(MBRL)被公认为有可能比不使用模型的RL更具有显著的样本效率。 如何从原始感官投入(例如图像)中自动和高效地开发准确模型,特别是对于复杂的环境和任务而言,这是一个具有挑战性的问题,阻碍了MBRL在现实世界的广泛应用。 在这项工作中,我们提议了一个基于遥感觉悟的模型强化学习系统,称为SAM-RL。利用以物理为基础的不同模拟和制式,SAM-RL通过将所提供的图像与真实原始图像进行比较,自动更新模型,并高效地制作政策。SAM-RL允许机器人选择一个信息性的观点来监测任务过程。我们把我们的框架应用到现实世界的实验中,以完成三项操作任务:机器人组装、工具操纵和变形物体操纵。我们通过广泛的实验展示SAM-RL的有效性。我们的项目网页https://sitesite.gogle.com/viewsam-rl提供补充材料和视频。