Reinforcement learning is applied to solve actual complex tasks from high-dimensional, sensory inputs. The last decade has developed a long list of reinforcement learning algorithms. Recent progress benefits from deep learning for raw sensory signal representation. One question naturally arises: how well do they perform concerning different robotic manipulation tasks? Benchmarks use objective performance metrics to offer a scientific way to compare algorithms. In this paper, we present RMBench, the first benchmark for robotic manipulations, which have high-dimensional continuous action and state spaces. We implement and evaluate reinforcement learning algorithms that directly use observed pixels as inputs. We report their average performance and learning curves to show their performance and stability of training. Our study concludes that none of the studied algorithms can handle all tasks well, soft Actor-Critic outperforms most algorithms in average reward and stability, and an algorithm combined with data augmentation may facilitate learning policies. Our code is publicly available at https://github.com/xiangyanfei212/RMBench-2022, including all benchmark tasks and studied algorithms.


翻译:强化学习用于解决来自高维、感官投入的实际复杂任务。 过去十年已经开发了一个长长的强化学习算法清单。 最近的进展得益于对原始感官信号代表的深层次学习。 一个自然产生的问题是:它们在不同机器人操纵任务方面的表现如何? 基准使用客观的性能衡量标准来提供比较算法的科学方法。 在本文中,我们介绍了机器人操纵的第一个基准RMBench, 机器人操纵具有高维持续行动和国家空间。 我们实施和评估直接使用观测到的像素作为投入的强化学习算法。 我们报告其平均性能和学习曲线,以显示其培训的性能和稳定性。 我们的研究结论是,所研究的算法中没有一个能够很好地处理所有任务,软的Acor-Critic在平均报酬和稳定性方面超越大多数算法,与数据增强相结合的算法可以促进学习政策。 我们的代码在https://github.com/xiangyanfei212/RMBench-2022, 包括所有基准任务和研究算法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
13+阅读 · 2019年11月14日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员