As one of the most popular GNN architectures, the graph attention networks (GAT) is considered the most advanced learning architecture for graph representation and has been widely used in various graph mining tasks with impressive results. However, since GAT was proposed, none of the existing studies have provided systematic insight into the relationship between the performance of GAT and the number of layers, which is a critical issue in guiding model performance improvement. In this paper, we perform a systematic experimental evaluation and based on the experimental results, we find two important facts: (1) the main factor limiting the accuracy of the GAT model as the number of layers increases is the oversquashing phenomenon; (2) among the previous improvements applied to the GNN model, only the residual connection can significantly improve the GAT model performance. We combine these two important findings to provide a theoretical explanation that it is the residual connection that mitigates the loss of original feature information due to oversquashing and thus improves the deep GAT model performance. This provides empirical insights and guidelines for researchers to design the GAT variant model with appropriate depth and well performance. To demonstrate the effectiveness of our proposed guidelines, we propose a GAT variant model-ADGAT that adaptively selects the number of layers based on the sparsity of the graph, and experimentally demonstrate that the effectiveness of our model is significantly improved over the original GAT.


翻译:作为最受欢迎的GNN结构之一,石图关注网络被认为是用于图形代表的最先进的学习架构,在各种图形采矿任务中被广泛使用,并取得了令人印象深刻的成果;然而,自提议采用GAT以来,现有研究没有一项对GAT绩效和层数之间的关系提供系统深入的了解,这是指导模型绩效改进的一个关键问题。在本文件中,我们进行了系统的实验性评估,并根据实验结果,发现两个重要事实:(1) 层数增加是过度夸大现象,因此限制GAT模型准确性的主要因素;(2) 在以前对GNN模型采用的改进中,只有剩余连接才能大大改善GAT模型的绩效。我们把这些重要研究结果结合起来,从理论上解释,这是减轻因夸大和从而改进GAT模型深度和良好业绩而导致原始特征信息损失的剩余联系。这为研究人员设计GAT变异模型提供了经验性模型和准则,以适当深度和良好性能的方式设计GAT模型模型。为了证明我们提议的指南的有效性,我们提议在GAT模型基础上大幅改进GAT变异性模型和GAT模型,我们提议在模型上选择基于原型模型的GAAT模型的模型的模型的模型,以显示我们的适应性。

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
14+阅读 · 2021年7月20日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员