Local features and contextual dependencies are crucial for 3D point cloud analysis. Many works have been devoted to designing better local convolutional kernels that exploit the contextual dependencies. However, current point convolutions lack robustness to varying point cloud density. Moreover, contextual modeling is dominated by non-local or self-attention models which are computationally expensive. To solve these problems, we propose density adaptive convolution, coined DAConv. The key idea is to adaptively learn the convolutional weights from geometric connections obtained from the point density and position. To extract precise context dependencies with fewer computations, we propose an interactive attention module (IAM) that embeds spatial information into channel attention along different spatial directions. DAConv and IAM are integrated in a hierarchical network architecture to achieve local density and contextual direction-aware learning for point cloud analysis. Experiments show that DAConv is significantly more robust to point density compared to existing methods and extensive comparisons on challenging 3D point cloud datasets show that our network achieves state-of-the-art classification results of 93.6% on ModelNet40, competitive semantic segmentation results of 68.71% mIoU on S3DIS and part segmentation results of 86.7% mIoU on ShapeNet.
翻译:本地特征和背景依赖性对于 3D 点云分析至关重要 。 许多工作都致力于设计更好的本地变异内核, 利用背景依赖性。 然而, 当前点的点变化缺乏强健性, 以不同的点云密度为不同点云密度。 此外, 上下文建模由非本地或自我关注的模型主导, 这些模型计算成本昂贵。 为了解决这些问题, 我们提出了密度适应性适应性演化变异, 创建 DAConv 。 关键理念是适应性地学习从点密度和位置的几何连接中获得的相动权重。 为了以较少的计算来提取精确的背景依赖性。 为了用较少的计算来提取精确的背景依赖性, 我们建议了一个互动关注模块( IM), 将空间信息嵌入到不同空间方向的频道关注中。 DAConv和 IAM 将整合在一个等级网络结构中, 以实现局部密度和背景方向认知的云分析。 实验显示, DAConvon 与现有方法相比, 和对挑战性的3D点云数据集进行的广泛比较表明我们的网络在模型网络上实现了93. 66% 和SCDIS3 部分的竞争性% 71%的结果。</s>