In many QBF encodings, sequences of Boolean variables stand for binary representations of integer variables. Examples are state labels in bounded model checking or actions in planning problems. Often not the full possible range is used, e.g., for representing six different states, three Boolean variables are required, rendering two of the eight possible assignments irrelevant for the solution of the problem. As QBF solvers do not have any domain-specific knowledge on the formula they process, they are not able to detect this pruning opportunity. In this paper, we introduce the idea of int-splits, which provide domain-specific information on integer variables to QBF solvers. This is particularly appealing for parallel Divide-and-Conquer solving which partitions the search space into independently solvable sub-problems. Using this technique, we reduce the number of generated sub-problems from a full expansion to only the required subset. We then evaluate how many resources int-splits save in problems already well suited for D&C. In that context, we provide a reference implementation that splits QBF formulas into many sub-problems with or without int-splits and merges results. We finally propose a comment-based optional syntax extension to (Q)DIMACS that includes int-splits and is suited for supplying proposed guiding paths natively to D&C solvers.
翻译:在许多QBF编码中,布尔变量的序列表示整数变量的二进制表示。例如,有界模型检查中的状态标签或计划问题中的动作。通常不使用整个可能范围,例如,要表示六个不同的状态,需要三个布尔变量,使得八个可能的分配中有两个与问题的解无关。由于QBF求解器没有对其处理的公式具有任何特定于领域的知识,因此它们不能检测到这种修剪机会。在本文中,我们介绍了int-splits的概念,它为QBF求解器提供了关于整数变量的特定于领域的信息。这对于并行分而治之求解特别有吸引力,该方法将搜索空间划分为可独立解决的子问题。使用这种技术,我们将生成的子问题数从完全扩展减少到仅需要的子集。然后,我们评估int-splits在已经适合D&C的问题中节省了多少资源。在这种情况下,我们提供了一个参考实现,将QBF公式分成许多带或不带int-splits的子问题并合并结果。最后,我们提出了一种基于注释的可选语法扩展(Q)DIMACS,包括int-splits并适合原生地向D&C求解器提供提供的引导路径。