Any-to-any voice conversion technologies convert the vocal timbre of an utterance to any speaker even unseen during training. Although there have been several state-of-the-art any-to-any voice conversion models, they were all based on clean utterances to convert successfully. However, in real-world scenarios, it is difficult to collect clean utterances of a speaker, and they are usually degraded by noises or reverberations. It thus becomes highly desired to understand how these degradations affect voice conversion and build a degradation-robust model. We report in this paper the first comprehensive study on the degradation robustness of any-to-any voice conversion. We show that the performance of state-of-the-art models nowadays was severely hampered given degraded utterances. To this end, we then propose speech enhancement concatenation and denoising training to improve the robustness. In addition to common degradations, we also consider adversarial noises, which alter the model output significantly yet are human-imperceptible. It was shown that both concatenations with off-the-shelf speech enhancement models and denoising training on voice conversion models could improve the robustness, while each of them had pros and cons.


翻译:任何语音转换技术都可以将任何声音转换为任何声音,即使是在培训期间,也看不到任何声音转换的音质。 虽然有一些最先进的任何语音转换模型, 但这些模型都以清洁的语音转换为成功转换为基础。 但是,在现实世界的情景下,很难收集到一个声音转换技术的清晰表达, 而且它们通常会因噪音或反响而退化。 因此,人们非常希望理解这些退化如何影响声音转换, 并构建一个降解式机器人模型。 我们在本文件中报告了关于任何声音转换为任何声音的退化强度的第一次全面研究。 我们显示,由于声音转换退化, 最先进的模型的性能现在都严重受阻。 为此,我们提出增强声音组合和分解培训以提高声音的稳健性。 除了常见的退化外, 我们还考虑对抗性噪音, 这会大大改变模型的输出, 但却是人类无法理解的。 我们在本文件中报告了关于任何声音转换为任何声音转换为任何声音转换的退化的强度的特性的第一次全面研究。 我们表明,现在最先进的模型的性能被严重地阻碍。 我们表明,因为其表现为退化化的状态模型的功能的功能被改进了每一个声音转换模型,同时对声音转换模型都具有稳健健健健健健健。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员