We present an automated data augmentation approach for image classification. We formulate the problem as Monte Carlo sampling where our goal is to approximate the optimal augmentation policies. We propose a particle filtering formulation to find optimal augmentation policies and their schedules during model training. Our performance measurement procedure relies on a validation subset of our training set, while the policy transition model depends on a Gaussian prior and an optional augmentation velocity parameter. In our experiments, we show that our formulation for automated augmentation reaches promising results on CIFAR-10, CIFAR-100, and ImageNet datasets using the standard network architectures for this problem. By comparing with the related work, we also show that our method reaches a balance between the computational cost of policy search and the model performance.
翻译:我们为图像分类提出了一个自动数据增强办法。我们将问题作为蒙特卡洛抽样处理,我们的目标是接近最佳增强政策。我们提议一个粒子过滤配方,以便在示范培训期间找到最佳增强政策及其时间表。我们的绩效衡量程序依赖于我们培训组的一个验证子集,而政策过渡模型则依赖于一个高斯先前的和可选的增强速度参数。在我们的实验中,我们显示我们的自动增强配方在使用标准网络架构来解决这一问题的CIFAR-10、CIFAR-100和图像网络数据集方面取得了大有希望的结果。我们通过与相关工作相比,我们还表明我们的方法在政策搜索的计算成本和模型性能之间达到了平衡。