Moreau-Yosida regularization is introduced into the framework of exact DFT. Moreau-Yosida regularization is a lossless operation on lower semicontinuous proper convex functions over separable Hilbert spaces, and when applied to the universal functional of exact DFT (appropriately restricted to a bounded domain), gives a reformulation of the ubiquitous $v$-representability problem and a rigorous and illuminating derivation of Kohn-Sham theory. The chapter comprises a self-contained introduction to exact DFT, basic tools from convex analysis such as sub- and superdifferentiability and convex conjugation, as well as basic results on the Moreau-Yosida regularization. The regularization is then applied to exact DFT and Kohn-Sham theory, and a basic iteration scheme based in the Optimal Damping Algorithm is analyzed. In particular, its global convergence established. Some perspectives are offered near the end of the chapter.
翻译:Moreau-Yosida的正规化是在精确的DFT框架内引入的。 Moreau-Yosida的正规化是针对分立的Hilbert空间的低半连续、适当的正统功能进行的无损操作,当应用于精确的DFT(适当限于一个受约束域)的普遍功能时,重新提出了无处不在的美元代表率问题,并严格和直截了当地推导了Kohn-Sham理论。该章包括了对精确的DFT的自成一体的介绍,来自交融分析的基本工具,如分和超分异性及交融,以及Moreau-Yosida正规化的基本结果。然后将正规化应用于精确的DFT和Kohn-Sham理论,并分析了基于Optimal Damping Algorithm 的基本循环计划。特别是其全球趋同性已经确立。有些观点在本章结尾处。