Is dynamics prediction indispensable for physical reasoning? If so, what kind of roles do the dynamics prediction modules play during the physical reasoning process? Most studies focus on designing dynamics prediction networks and treating physical reasoning as a downstream task without investigating the questions above, taking for granted that the designed dynamics prediction would undoubtedly help the reasoning process. In this work, we take a closer look at this assumption, exploring this fundamental hypothesis by comparing two learning mechanisms: Learning from Dynamics (LfD) and Learning from Intuition (LfI). In the first experiment, we directly examine and compare these two mechanisms. Results show a surprising finding: Simple LfI is better than or on par with state-of-the-art LfD. This observation leads to the second experiment with Ground-truth Dynamics, the ideal case of LfD wherein dynamics are obtained directly from a simulator. Results show that dynamics, if directly given instead of approximated, would achieve much higher performance than LfI alone on physical reasoning; this essentially serves as the performance upper bound. Yet practically, LfD mechanism can only predict Approximate Dynamics using dynamics learning modules that mimic the physical laws, making the following downstream physical reasoning modules degenerate into the LfI paradigm; see the third experiment. We note that this issue is hard to mitigate, as dynamics prediction errors inevitably accumulate in the long horizon. Finally, in the fourth experiment, we note that LfI, the extremely simpler strategy when done right, is more effective in learning to solve physical reasoning problems. Taken together, the results on the challenging benchmark of PHYRE show that LfI is, if not better, as good as LfD for dynamics prediction. However, the potential improvement from LfD, though challenging, remains lucrative.
翻译:动态预测对物理推理是不可或缺的吗? 如果是这样, 动态预测模块在物理推理过程中扮演什么样的角色? 大多数研究侧重于设计动态预测网络和将物理推理作为下游任务处理而不调查上述问题, 理所当然地认为设计动态预测无疑将有助于推理过程。 在这项工作中, 我们更仔细地审视这一假设, 通过比较两个学习机制来探索这一基本假设: 从动态(LfD)学习和从理论学习(LfI) 。 在第一个实验中, 我们直接检查并比较这两个机制。 在第一个实验中, 我们直接检查并比较这两个机制。 结果显示一个惊人的发现: 简单的LfI 物理推理优于或与最新LfD 相比。 这一观察导致第二次与地貌动态预测的实验,LfD 的理想案例, 即动态直接从模拟中直接获得。 结果表明, 动态,如果直接给出,在物理推理学方面, 将比LfI 单单单体推理实现更高得多的绩效; 基本上, 这相当于性推理。 然而, LfD 机制只能预测Apbricalal rial rial rial 推理, 推理, 在物理推理学模型中, 的第三个推理学模型中, 最后的推理会显示, 自然推理, 最后的推理, 我们的推理, 自然推理, 自然推理, 最后的推理是 也就是的推理, 最终的推理, 最后的推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理, 自然推理是 的推理是 的推理, 的推理, 的推理, 的推理, 自然推理, 自然推理是 的推理, 的推理, 我们的推理, 我们的推理, 我们的推理, 我们的推理, 的推理, 自然推理, 我们的推理, 自然推理, 直理, 自然推理, 的推理,