In convolutional neural networks, the convolutions are conventionally performed using a square kernel with a fixed N $\times$ N receptive field (RF). However, what matters most to the network is the effective receptive field (ERF) that indicates the extent with which input pixels contribute to an output pixel. Inspired by the property that ERFs typically exhibit a Gaussian distribution, we propose a Gaussian Mask convolutional kernel (GMConv) in this work. Specifically, GMConv utilizes the Gaussian function to generate a concentric symmetry mask that is placed over the kernel to refine the RF. Our GMConv can directly replace the standard convolutions in existing CNNs and can be easily trained end-to-end by standard back-propagation. We evaluate our approach through extensive experiments on image classification and object detection tasks. Over several tasks and standard base models, our approach compares favorably against the standard convolution. For instance, using GMConv for AlexNet and ResNet-50, the top-1 accuracy on ImageNet classification is boosted by 0.98% and 0.85%, respectively.


翻译:在卷积神经网络中,卷积通常使用固定的 $N\times N$ 感受野的正方形卷积核来执行。然而,对于网络来说最重要的是有效感受野(ERF),即指示输入像素对输出像素的影响程度的范围。受到 ER 它常常呈现高斯分布的性质启发,本文提出了一种高斯遮罩 (Gaussian Mask) 卷积核(GMConv)。具体来说,GMConv 利用高斯函数生成一种与内核呈同心对称的掩码来细化感受野。我们的 GMConv 可以直接替换现有 CNN 中的标准卷积,并可以使用标准反向传播轻松进行端到端训练。我们通过对图像分类和物体检测任务的广泛实验来评估我们的方法。在多个任务和基准模型上,我们的方法与标准卷积相比具有较好的表现。例如,在 AlexNet 和 ResNet-50 中使用 GMConv,ImageNet 分类的 top-1 准确率分别提高了 0.98% 和 0.85%。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员