Unmanned aerial vehicles (UAVs) are aircraft whose flights can be fully autonomous without any provision for human intervention. One of the most useful and promising domains where UAVs can be employed is natural disaster management. In this paper, we focus on an emergency scenario and propose the use of a fleet of UAVs that help rescue teams to individuate people needing help inside an affected area. We model this situation as an original graph theoretical problem called Multi-Depot Multi-Trip Vehicle Routing Problem with Total Completion Times minimization (MDMT-VRP-TCT); we go through some problems already studied in the literature that appear somehow similar to it and highlight the differences, propose a mathematical formulation for our problem as a MILP, design a matheuristic framework to quickly solve large instances, and experimentally test its performance. Beyond the proposed application, our solution works in any case in which a multi-depot multi-trip vehicle routing problem must be solved.
翻译:无人驾驶航空飞行器(UAVs)是无人驾驶航空飞行器(UAVs)的飞行可以完全自主而无需任何人力干预的飞机。无人驾驶航空飞行器(UAVs)是使用无人驾驶航空飞行器的最有用和最有希望的领域之一,即自然灾害管理。在本文中,我们侧重于一个紧急情况,并提议使用无人驾驶航空飞行器车队帮助救援队在受灾地区培养需要帮助的人。我们把这种情况模拟成一个原始的图形理论问题,称为“多功能多功能多功能多功能机动飞行器运行问题,同时尽量减少完全完成时间”(MDMMT-VRP-TCT);我们探讨一些文献中已经研究过的问题,这些问题似乎与它类似,并突出差异,提出我们作为MILP的问题的数学公式,设计一个迅速解决大事件的数学框架,实验性地测试其性能。除了拟议的应用外,我们的解决办法在任何必须解决多功能多功能多功能多功能机动飞行器路线问题的情况下都起作用。