A random variable $Y_1$ is said to be smaller than $Y_2$ in the increasing concave stochastic order if $\mathbb{E}[\phi(Y_1)] \leq \mathbb{E}[\phi(Y_2)]$ for all increasing concave functions $\phi$ for which the expected values exist, and smaller than $Y_2$ in the increasing convex order if $\mathbb{E}[\psi(Y_1)] \leq \mathbb{E}[\psi(Y_2)]$ for all increasing convex $\psi$. This article develops nonparametric estimators for the conditional cumulative distribution functions $F_x(y) = \mathbb{P}(Y \leq y \mid X = x)$ of a response variable $Y$ given a covariate $X$, solely under the assumption that the conditional distributions are increasing in $x$ in the increasing concave or increasing convex order. Uniform consistency and rates of convergence are established both for the $K$-sample case $X \in \{1, \dots, K\}$ and for continuously distributed $X$.


翻译:随机变量$Y_1美元据说小于$Y_2美元,在不断增长的 concave stochab{E}[\\\mathbb{E}[\\phi(Y_1)]\leq\mathbb{E}[\phi(Y_2)美元]\leq \mathbb{E}[Y_2]美元]中,随机变量$1美元据说小于$Y_2美元,如果所有不断增长的 contabbb{E}[\\\mathbbb{[\mathbb{Y_1]\\\\\\\\\\ph(Y_1)]\\leq\2美元]\leq\lecomcave函数中,如果有预期值存在,则随机变量值小于$Y_2美元[Y_2}[\\psi_2]\leq leq\ mathbb{leq} [E}[\\\\ ppsi(Y_2$)$]$]$(对于所有不断增长的 convexx $$(美元) $(Yaxxxxx contrax) 的计算,则该文章为条件分配函数开发非参数分配函数非参数的不参数的参数的参数的参数的参数的计算。对于条件分配值为$_x=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
106+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
106+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员