A random variable $Y_1$ is said to be smaller than $Y_2$ in the increasing concave stochastic order if $\mathbb{E}[\phi(Y_1)] \leq \mathbb{E}[\phi(Y_2)]$ for all increasing concave functions $\phi$ for which the expected values exist, and smaller than $Y_2$ in the increasing convex order if $\mathbb{E}[\psi(Y_1)] \leq \mathbb{E}[\psi(Y_2)]$ for all increasing convex $\psi$. This article develops nonparametric estimators for the conditional cumulative distribution functions $F_x(y) = \mathbb{P}(Y \leq y \mid X = x)$ of a response variable $Y$ given a covariate $X$, solely under the assumption that the conditional distributions are increasing in $x$ in the increasing concave or increasing convex order. Uniform consistency and rates of convergence are established both for the $K$-sample case $X \in \{1, \dots, K\}$ and for continuously distributed $X$.
翻译:随机变量$Y_1美元据说小于$Y_2美元,在不断增长的 concave stochab{E}[\\\mathbb{E}[\\phi(Y_1)]\leq\mathbb{E}[\phi(Y_2)美元]\leq \mathbb{E}[Y_2]美元]中,随机变量$1美元据说小于$Y_2美元,如果所有不断增长的 contabbb{E}[\\\mathbbb{[\mathbb{Y_1]\\\\\\\\\\ph(Y_1)]\\leq\2美元]\leq\lecomcave函数中,如果有预期值存在,则随机变量值小于$Y_2美元[Y_2}[\\psi_2]\leq leq\ mathbb{leq} [E}[\\\\ ppsi(Y_2$)$]$]$(对于所有不断增长的 convexx $$(美元) $(Yaxxxxx contrax) 的计算,则该文章为条件分配函数开发非参数分配函数非参数的不参数的参数的参数的参数的参数的计算。对于条件分配值为$_x=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx