We study the mixing time of the Metropolis-adjusted Langevin algorithm (MALA) for sampling from a log-smooth and strongly log-concave distribution. We establish its optimal minimax mixing time under a warm start. Our main contribution is two-fold. First, for a $d$-dimensional log-concave density with condition number $\kappa$, we show that MALA with a warm start mixes in $\tilde O(\kappa \sqrt{d})$ iterations up to logarithmic factors. This improves upon the previous work on the dependency of either the condition number $\kappa$ or the dimension $d$. Our proof relies on comparing the leapfrog integrator with the continuous Hamiltonian dynamics, where we establish a new concentration bound for the acceptance rate. Second, we prove a spectral gap based mixing time lower bound for reversible MCMC algorithms on general state spaces. We apply this lower bound result to construct a hard distribution for which MALA requires at least $\tilde \Omega (\kappa \sqrt{d})$ steps to mix. The lower bound for MALA matches our upper bound in terms of condition number and dimension. Finally, numerical experiments are included to validate our theoretical results.
翻译:我们研究了大都市调整的朗埃文算法(MALA)的混合时间, 以便从对数和强烈的对数分布中取样。 我们在温暖的开端下建立最优小型混合时间。 我们的主要贡献是两重的。 首先, 我们用条件编号为$\kappaa 的以美元为条件的立方对数密度, 我们显示, MALA 的热启动混合时间在 $\ tilde O (\ kappa \ sqrt{d} 以美元为基数, 直至对数因素。 这比以前关于条件编号$\ kappa $ 或维度 $ d$ 为基数的依赖性工作有所改善。 我们的证据依赖于将飞跃混混成与连续的汉密尔顿动态进行比较, 在那里我们为接受率设定了一个新的集中点。 第二, 我们证明光谱差距的混合时间比一般州空间的可逆的MC算值要低。 我们用这个较低的约束结果来构建一个硬的分布, 而MALA至少需要$\\ kapta dede, ad\\ Arimal ad rialtial dealtialtial fical rial decilate rialate.