项目名称: 三类非椭圆代数曲线上的密码特性研究
项目编号: No.61272045
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 游林
作者单位: 杭州电子科技大学
项目金额: 61万元
中文摘要: 本项目研究三类非椭圆代数曲线的密码特性. 第一类是奇特征p 的任意次扩域上的超椭圆曲线C_1: y^2 = x^p + ax + b;第二类是有限域上的超椭圆曲线C_2: y^2 + h(x)y = x^(2g + 1) + ax + b, 其中g是大于1的正整数,h(x) = 0,1或x ;第三类是有限域上的代数曲线A ={a,b}型的代数曲线C_{ab} ,主要考虑a = 3与b = 4,5及7的情形。 拟研究基于这三类非椭圆代数曲线上的以下四个密码特性: 1)曲线上Jacobian 群代数性质及群运算的公式化计算表示; 2)求曲线上Jacobian 群阶的有效算法; 3)其Jacobian 群上除子标量乘的快速算法; 4)基于这三类曲线的Jacobian 群上的离散对数问题.
中文关键词: 非椭圆代数曲线;Jacobian 群;特征多项式;除子标量乘;密钥安全管理
英文摘要: This project will deal with the cryptographic characteristics of the three kinds of non-elliptic algebraic curves over finite fields. The first class is the hyperelliptic curve C_1: y^2 = x^p + ax + b over any field of characteristic p; The second class is the hyperelliptic curve C_2: y^2 + h(x)y = x^(2g + 1) + ax + b over any finite field with g > 1 and h(x) = 0,1 or x; The third class is the algebraic curve C_{ab} with a = 3, and b = 4,5 or 7. We will do research on the following four cryptographic characteristics of the three classes of non-elliptic curve algebraic curves: 1) The algebraic properties of the Jacobian groups of the curves and the formulized representations for the computations of group operations; 2) Efficient algorithms for the computation of the orders of the Jacobian groups of the curves; 3) Efficient algorithms for the computation of divisor scalar multiplications on the Jacobian groups of the curves; 4) The discrete logarithm problems on the Jacobian groups of the curves.
英文关键词: Non-elliptic algebraic Curve;Jacobian group;Characteristic Polynomials;Divisor Scalar Multiplication;Key Secure Management