Over the past few years, there has been a significant improvement in the domain of few-shot learning. This learning paradigm has shown promising results for the challenging problem of anomaly detection, where the general task is to deal with heavy class imbalance. Our paper presents a new approach to few-shot classification, where we employ the knowledge-base of multiple pre-trained convolutional models that act as the backbone for our proposed few-shot framework. Our framework uses a novel ensembling technique for boosting the accuracy while drastically decreasing the total parameter count, thus paving the way for real-time implementation. We perform an extensive hyperparameter search using a power-line defect detection dataset and obtain an accuracy of 92.30% for the 5-way 5-shot task. Without further tuning, we evaluate our model on competing standards with the existing state-of-the-art methods and outperform them.
翻译:过去几年来,在少见的学习领域有了显著的改进。这种学习范式在异常检测这一具有挑战性的问题上显示了有希望的结果,在那里,总的任务是处理严重的阶级不平衡问题。我们的文件提出了对少见分类的新方法,我们采用了作为我们拟议的少见框架的支柱的多种先入为主的先入为主的革命模型的知识基础。我们的框架使用一种新颖的组合技术来提高准确性,同时大幅度降低总参数计数,从而为实时实施铺平了道路。我们利用一个电线缺陷检测数据集进行了广泛的超光计搜索,并获得了5行5分的精确度。我们没有进一步调整,就评估了与现有最新方法竞争标准的模式,并超越了这些模式。