We present a Multi-Window Data Augmentation (MWA-SER) approach for speech emotion recognition. MWA-SER is a unimodal approach that focuses on two key concepts; designing the speech augmentation method and building the deep learning model to recognize the underlying emotion of an audio signal. Our proposed multi-window augmentation approach generates additional data samples from the speech signal by employing multiple window sizes in the audio feature extraction process. We show that our augmentation method, combined with a deep learning model, improves speech emotion recognition performance. We evaluate the performance of our approach on three benchmark datasets: IEMOCAP, SAVEE, and RAVDESS. We show that the multi-window model improves the SER performance and outperforms a single-window model. The notion of finding the best window size is an essential step in audio feature extraction. We perform extensive experimental evaluations to find the best window choice and explore the windowing effect for SER analysis.


翻译:我们提出了一种多窗口数据增强(MWA-SER)的语音情感识别方法。 MWA-SER是一种单一方式的方法,侧重于两个关键概念;设计语音增强方法和建立深层次学习模型,以识别音频信号背后的情感。我们提议的多窗口增强方法通过在音频特征提取过程中使用多个窗口大小,从语音信号中产生更多的数据样本。我们展示了我们的增强方法,加上深层学习模型,改善了语音识别性能。我们评估了我们在三个基准数据集:IEMOCAP、SAVEE和RAVDESS上的方法的绩效。我们显示,多窗口模型改进了SER的性能并超越了单一窗口模式。找到最佳窗口大小的概念是音频特征提取过程中的一个重要步骤。我们进行了广泛的实验性评估,以找到最佳窗口选择,并探索SER分析的窗口效应。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员