We initiate the study of generalized AC0 circuits comprised of negations and arbitrary unbounded fan-in gates that only need to be constant over inputs of Hamming weight $\ge k$, which we denote GC0$(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ (output $1$ iff $\ge k$ bits are 1) and $k$-$AND$ (output $0$ iff $\ge k$ bits are 0), and thus can be seen as an interpolation between AC0 and TC0. We establish a tight multi-switching lemma for GC0$(k)$ circuits, which bounds the probability that several depth-2 GC0$(k)$ circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-$d$ size-$s$ AC0 circuits lifts to depth-$d$ size-$s^{.99}$ GC0$(.01\log s)$ circuits with no loss in parameters (other than hidden constants). Our result has the following applications: 1.Size-$2^{\Omega(n^{1/d})}$ depth-$d$ GC0$(\Omega(n^{1/d}))$ circuits do not correlate with parity (extending a result of H{\aa}stad (SICOMP, 2014)). 2. Size-$n^{\Omega(\log n)}$ GC0$(\Omega(\log^2 n))$ circuits with $n^{.249}$ arbitrary threshold gates or $n^{.499}$ arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). 3. There is a seed length $O((\log m)^{d-1}\log(m/\varepsilon)\log\log(m))$ pseudorandom generator against size-$m$ depth-$d$ GC0$(\log m)$ circuits, matching the AC0 lower bound of H{\aa}stad stad up to a $\log\log m$ factor (extending a result of Lyu (CCC, 2022)). 4. Size-$m$ GC0$(\log m)$ circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).
翻译:我们启动了对广义AC0电路的研究,其中包含否定和任意的无界扇入门电路,这些电路只需要在汉明重量$\ge k$的输入上是固定的,我们将其表示为GC0$(k)$。该类别的门集包括有偏LTF,如$k$-$OR$(如果$\geq k$位为1时输出1)和$k$-$AND$(如果$\geq k$位为0时输出0),因此可以看作是AC0和TC0之间的插值。我们建立了一种GC0$(k)$电路的紧密多重开关引理,该引理限制了几个深度2个GC0$(k)$电路在随机限制下不同时简化的概率。我们还建立了一项新的深度减少引理,使得与我们的多重开关引理相结合,我们可以显示从多重开关引理获得的许多结果,深度-$d$大小为-$s$ AC0电路提升到深度-$d$大小为-$s^{.99}$ GC0$(.01\log s)$电路,没有参数(除了隐藏的常数)损失。我们的结果具有以下应用:1. 大小为$2^{\Omega(n^{1/d})}$深度为$d$的GC0$(\Omega(n^{1/d}))$电路不与奇偶性相关(扩展了H{\aa}stad(SICOMP,2014)的结果)。2. 具有$n^{.249}$任意门槛门或$n^{.499}$对称门的GC0$(\Omega(\log^2 n))$电路的大小为$n^{\Omega(\log n)}$,针对显式函数展现了指数小的相关性(扩展了Tan和Servedio(RANDOM,2019)的结果)。3. 存在针对大小为$m$深度为$d$ GC0$(\log m)$电路的种子长度为$O((\log m)^{d-1}\log(m/\varepsilon)\log\log(m))$的伪随机生成器,与H{\aa}stad up to a $\log\log m$ lower bound相匹配(扩展了Lyu(CCC,2022)的结果)。4. 大小为$m$ GC0$(\log m)$电路具有指数小的Fourier尾巴(扩展了Tal(CCC,2017)的结果)。