项目名称: 复动力学性质在复微分方程理论中的应用研究
项目编号: No.11426035
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 张国威
作者单位: 安阳师范学院
项目金额: 3万元
中文摘要: 复微分方程与复动力系统都是复分析中的重要研究内容,本项目研究的是两者相结合的领域。拟考虑对和Brü猜想相关的线性复微分方程的系数引入动力学性质,来研究此方程解的增长性问题,从而为Brü猜想的解决提供一种新的思路。另外,还考虑一类线性复微分方程的解及其导数的Julia集的径向分布,Fatou集的多连通性等动力学性质。本课题的提出与解决,将有助于深化复微分方程与复动力系统的联系。
中文关键词: 复微分方程;亚纯函数;Julia集;径向分布;角域
英文摘要: Complex differential equations and complex dynamics are important research contents in complex analysis, this project is a combination of both the fields. By introduction the dynamical properties to the coefficients of a complex differential equations, which related to Br ük conjecture, we consider to study the growth of this equation. Thus, we provide a new way to solve the Br ük conjecture. In addition, for the entire solutions and their derivatives of a class of linear differential equations, we consider the radial distribution of the Julia sets, the multiple connectivity of the components of the Fatou sets and other dynamical properties of them. This topic put forward and solve, will help to deepen complex differential equations and complex dynamics connections.
英文关键词: complex differential equations;meromorphic function;Julia set;radial distribution;angular domain