We initiate the study of generalized AC0 circuits comprised of negations and arbitrary unbounded fan-in gates that only need to be constant over inputs of Hamming weight $\ge k$, which we denote GC0$(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ (output $1$ iff $\ge k$ bits are 1) and $k$-$AND$ (output $0$ iff $\ge k$ bits are 0), and thus can be seen as an interpolation between AC0 and TC0. We establish a tight multi-switching lemma for GC0$(k)$ circuits, which bounds the probability that several depth-2 GC0$(k)$ circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-$d$ size-$s$ AC0 circuits lifts to depth-$d$ size-$s^{.99}$ GC0$(.01\log s)$ circuits with no loss in parameters (other than hidden constants). Our result has the following applications: 1.Size-$2^{\Omega(n^{1/d})}$ depth-$d$ GC0$(\Omega(n^{1/d}))$ circuits do not correlate with parity (extending a result of H{\aa}stad (SICOMP, 2014)). 2. Size-$n^{\Omega(\log n)}$ GC0$(\Omega(\log^2 n))$ circuits with $n^{.249}$ arbitrary threshold gates or $n^{.499}$ arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). 3. There is a seed length $O((\log m)^{d-1}\log(m/\varepsilon)\log\log(m))$ pseudorandom generator against size-$m$ depth-$d$ GC0$(\log m)$ circuits, matching the AC0 lower bound of H{\aa}stad stad up to a $\log\log m$ factor (extending a result of Lyu (CCC, 2022)). 4. Size-$m$ GC0$(\log m)$ circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月6日
Arxiv
0+阅读 · 2023年7月5日
VIP会员
相关资讯
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员