The class $Ts(r,f)$ the trigonometric interpolation splines depending on the parameter vectors, selected convergence factors and interpolation factors is considered. The main properties of simple interpolation trigonometric splines are given, which are also transferred to periodic simple interpolation polynomial splines. These results lead to the possibility of combining the theory of simple polynomial interpolation splines and the basics of the theory of simple trigonometric splines into a single theory - the theory of interpolation splines
翻译:根据参数矢量、选定的趋同系数和内插系数,考虑了根据参数矢量、选定的趋同系数和内插系数而定的三角内推样条的等级$Ts(r,f)$($Ts,r,f)$($Ts)$($Ts,r,f)$($Ts,美元)。提供了简单的内插三角三角样条的主要特性,这些特性还被转移到周期性简单内插多圆形样条线。这些结果使得有可能将简单多边内插图样条的理论和简单三角样条理论的基本原理结合到一个理论中,即内插样条的理论。