We consider the problem of constructing nonparametric undirected graphical models for high-dimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional means. In this article we provide a more flexible model which relaxes the linearity assumption by replacing it by an arbitrary additive form. The use of functional principal components offers an estimation strategy that uses a group lasso penalty to estimate the relevant edges of the graph. We establish statistical guarantees for the resulting estimators, which can be used to prove consistency if the dimension and the number of functional principal components diverge to infinity with the sample size. We also investigate the empirical performance of our method through simulation studies and a real data application.
翻译:我们考虑了为高维功能数据构建非参数非定向非图形模型的问题,这方面的大多数现有统计方法假设了高斯在顶部的分布或线性有条件手段。在本条中,我们提供了一个更灵活的模型,以任意的添加形式取而代之,放松了对线性假设。功能性主要组成部分的使用提供了一个估计战略,使用一组拉索惩罚来估计图的相关边缘。我们为由此得出的估计数据者建立了统计保障,如果功能性主要组成部分的尺寸和数量与抽样大小不尽相同,可以用来证明一致性。我们还通过模拟研究和实际数据应用来调查我们方法的经验性表现。