We prove two theorems related to the Central Limit Theorem (CLT) for Martin-L\"of Random (MLR) sequences. Martin-L\"of randomness attempts to capture what it means for a sequence of bits to be ``truly random''. By contrast, CLTs do not make assertions about the behavior of a single random sequence, but only on the distributional behavior of a sequence of random variables. Semantically, we usually interpret CLTs as assertions about the collective behavior of infinitely many sequences. Yet, our intuition is that if a sequence of bits is ``truly random'', then it should provide a ``source of randomness'' for which CLT-type results should hold. We tackle this difficulty by using a sampling scheme that generates an infinite number of samples from a single binary sequence. We show that when we apply this scheme to a Martin-L\"of random sequence, the empirical moments and cumulative density functions (CDF) of these samples tend to their corresponding counterparts for the normal distribution. We also prove the well known almost sure central limit theorem (ASCLT), which provides an alternative, albeit less intuitive, answer to this question. Both results are also generalized for Schnorr random sequences. Finally, we provide a counterexample relating to general almost everywhere statements for MLR sequences.
翻译:我们证明了与“ 马丁- L” 随机( MLR) 序列的中限理论( CLT) 相关的两个理论。 “ 马丁- L ” 随机性“ 马丁- L ” 试图捕捉一个位子序列“ 绝对随机 ” 的含义。 相反, CLT 并不对单一随机序列的行为做出断言, 仅对随机变量序列的分布行为做出断言。 典型地说, 我们通常将 CLT 解释为对无限多序列的集体行为的描述。 然而, 我们直觉是, 如果一个位子序列是“ 非常随机的 ”, 那么它应该提供一个“ 随机性源 ”, 而 CLT 类型的结果应该保持 。 我们通过使用一个抽样方案来解决这一困难, 它将生成一个单一的数极多的样本序列。 我们显示, 当我们对一个随机序列的 Martin- L\" 时, 这些样本的经验时刻和累积密度函数( CDFF) 倾向于正常分布的对应对应方 。 我们还证明一个非常清楚的“ 随机序列 ”, 提供了一个非常清楚的普通的答案。