The normal distributions transform (NDT) is an effective paradigm for the point set registration. This method is originally designed for pair-wise registration and it will suffer from great challenges when applied to multi-view registration. Under the NDT framework, this paper proposes a novel multi-view registration method, named 3D multi-view registration based on the normal distributions transform (3DMNDT), which integrates the K-means clustering and Lie algebra solver to achieve multi-view registration. More specifically, the multi-view registration is cast into the problem of maximum likelihood estimation. Then, the K-means algorithm is utilized to divide all data points into different clusters, where a normal distribution is computed to locally models the probability of measuring a data point in each cluster. Subsequently, the registration problem is formulated by the NDT-based likelihood function. To maximize this likelihood function, the Lie algebra solver is developed to sequentially optimize each rigid transformation. The proposed method alternately implements data point clustering, NDT computing, and likelihood maximization until desired registration results are obtained. Experimental results tested on benchmark data sets illustrate that the proposed method can achieve state-of-the-art performance for multi-view registration.
翻译:正常分布变换( NDT) 是点定注册的有效范例 。 这个方法最初是为配对式登记设计的, 在多视图登记时会遇到巨大的挑战 。 根据 NDT 框架, 本文提出一种新的多视图登记方法, 以正常分布变换( 3DNDT) 为基础, 名为 3D 多视图登记, 将 K- 平均值组和 Lie 代数 解答器整合到多视图登记中。 更具体地说, 多视图登记被抛入了最大可能性估计的问题 。 然后, K 比例算法被用来将所有数据点分成不同的组, 在那里, 正常的分布会计算到每个组中测量数据点的概率。 随后, 注册问题由基于 NDT 的概率函数来拟订 。 为了尽量扩大这一可能性功能, 将 立位数数解解器开发成一个按顺序优化每次僵硬变换的系统。 拟议的方法将数据点组合、 NDT 计算和可能性最大化, 直到获得预期的登记结果 。 在基准数据集上测试的实验结果表明, 拟议的方法可以实现多视图的状态登记。