Node classification for graph-structured data aims to classify nodes whose labels are unknown. While studies on static graphs are prevalent, few studies have focused on dynamic graph node classification. Node classification on dynamic graphs is challenging for two reasons. First, the model needs to capture both structural and temporal information, particularly on dynamic graphs with a long history and require large receptive fields. Second, model scalability becomes a significant concern as the size of the dynamic graph increases. To address these problems, we propose the Time Augmented Dynamic Graph Neural Network (TADGNN) framework. TADGNN consists of two modules: 1) a time augmentation module that captures the temporal evolution of nodes across time structurally, creating a time-augmented spatio-temporal graph, and 2) an information propagation module that learns the dynamic representations for each node across time using the constructed time-augmented graph. We perform node classification experiments on four dynamic graph benchmarks. Experimental results demonstrate that TADGNN framework outperforms several static and dynamic state-of-the-art (SOTA) GNN models while demonstrating superior scalability. We also conduct theoretical and empirical analyses to validate the efficiency of the proposed method. Our code is available at https://sites.google.com/view/tadgnn.
翻译:图表结构数据的节点分类旨在对标签不明的节点进行分类。 静态图形的研究非常普遍, 但很少有研究侧重于动态图形节点分类。 动态图形的节点分类具有挑战性, 有两个原因。 首先, 模型需要捕捉结构和时间信息, 特别是具有长期历史的动态图表, 需要大面积的可接受字段。 其次, 模型可缩放性随着动态图形的大小的增大而成为一个重大关切问题。 为了解决这些问题, 我们提议了时间增强动态图形网络框架( TADGNN) 框架。 TADGNN 框架由两个模块组成:1) 时间增强模块, 记录动态图形节点在结构上的时间演变, 创建一个时间强化的spotio- 时空图, 和 2) 信息传播模块, 利用构建的时间缩放图的大小来学习每个节点的动态表达方式。 我们在四个动态图表基准上进行无差异分类实验。 实验结果显示, TADGNNN 框架超越了多个静态和动态状态- art (SOTA) 结构化模型分析, 和高度分析。 我们的GNNNGNG的理论分析是用于高级分析。