Increasing the number of degrees of freedom of robotic systems makes them more versatile and flexible. This usually renders the system kinematically redundant: the main manipulation or interaction task does not fully determine its joint maneuvers. Additional constraints or objectives are required to solve the under-determined control and planning problems. The state-of-the-art approaches arrange tasks in a hierarchy and decouple lower from higher priority tasks on velocity or torque level using projectors. We develop an approach to redundancy resolution and decoupling on position level by determining subspaces of the configurations space that are independent of the task. We call them orthogonal foliations because they are, in a certain sense, orthogonal to the task self-motion manifolds. The approach provides a better insight into the topological properties of robot kinematics and control problems, allowing a global view. A condition for the existence of orthogonal foliations is derived. If the condition is not satisfied, we will still find approximate solutions by numerical optimization. Coordinates can be defined on these orthogonal foliations and can be used as additional task variables for control. We show in simulations that we can control the system without the need for projectors using these coordinates; and we validate the approach experimentally on a 7-DoF robot.
翻译:增加机器人系统的自由度可以使其更加多才多艺和灵活。这通常会使系统成为运动学上的冗余:主要的操作或交互任务不能全面确定其关节运动。需要添加额外的约束或目标来解决欠定的控制和规划问题。目前的方法将任务按优先级组织成层次结构,并使用投影器在速度或力矩层次上将较低优先级的任务与较高优先级的任务解耦。我们提出了一种在姿态层面上解决冗余和解耦的方法,通过确定与任务无关的配置空间的子空间来实现。我们将它们称为正交展形,因为它们在某种程度上与任务自身运动的流形正交。这种方法提供了对机器人运动学和控制问题拓扑特性的更好见解,允许进行全局视角分析。导出了正交展形存在的条件。如果条件不满足,我们仍然可以通过数值优化找到近似解。可以在这些正交展形上定义坐标,并将其用作控制的附加任务变量。我们在模拟中展示了使用这些坐标可以不需要投影器控制系统的情况,同时我们还在一个七自由度机器人上进行了实验验证。