We develop a (co)algebraic framework to study a family of process calculi with monadic branching structures and recursion operators. Our framework features a uniform semantics of process terms and a complete axiomatisation of semantic equivalence. We show that there are uniformly defined fragments of our calculi that capture well-known examples from the literature like regular expressions modulo bisimilarity and guarded Kleene algebra with tests. We also derive new calculi for probabilistic and convex processes with an analogue of Kleene star.
翻译:我们开发了一个(co)代数框架, 用于研究由修道院分支结构和循环操作员组成的过程计算体系。 我们的框架包含一个统一的过程术语语义和语义等同的完全非同化。 我们显示,我们的计算体系有统一定义的碎片,从文献中捕捉出众所周知的例子, 如常规表达式模异性, 并用测试来保护 Kleene代数。 我们还用Kleene 恒星的类比产生新的概率和共性过程的计算法。