Vision-and-Language Navigation (VLN) is a task that an agent is required to follow a language instruction to navigate to the goal position, which relies on the ongoing interactions with the environment during moving. Recent Transformer-based VLN methods have made great progress benefiting from the direct connections between visual observations and the language instruction via the multimodal cross-attention mechanism. However, these methods usually represent temporal context as a fixed-length vector by using an LSTM decoder or using manually designed hidden states to build a recurrent Transformer. Considering a single fixed-length vector is often insufficient to capture long-term temporal context, in this paper, we introduce Multimodal Transformer with Variable-length Memory (MTVM) for visually-grounded natural language navigation by modelling the temporal context explicitly. Specifically, MTVM enables the agent to keep track of the navigation trajectory by directly storing previous activations in a memory bank. To further boost the performance, we propose a memory-aware consistency loss to help learn a better joint representation of temporal context with random masked instructions. We evaluate MTVM on popular R2R and CVDN datasets, and our model improves Success Rate on R2R unseen validation and test set by 2% each, and reduce Goal Process by 1.6m on CVDN test set.


翻译:视觉和语言导航(VLN)是一项任务,要求一个代理机构遵循一种语言指令以导航目标位置,而目标位置取决于在移动过程中与环境的持续互动。最近以变异器为基础的VLN方法取得了巨大进展,得益于视觉观测与通过多式联运交叉注意机制的语言教学之间的直接联系。然而,这些方法通常代表一种固定长矢量,使用LSTM解码器或使用人工设计的隐藏状态来构建一个经常性变异器。考虑到单个固定长度矢量往往不足以捕捉长期的时间环境,在本文件中,我们通过对时间环境进行建模,为有视觉背景的自然语言导航引入多式内存(MTVM ) 。具体地说,MTVM使该代理商能够通过直接存储先前的激活在记忆库中进行跟踪导航轨迹。为了进一步提升性,我们提议了一种记忆-觉一致性损失,以便用随机遮蔽的指示来更好地联合描述时间环境。我们用流行的 R2R 和 CVN 1.6 目标测试标准,通过每套R2 R2 和 CVN 测试模型来改进我们的MTVR2 并改进我们的目标测试标准。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
17+阅读 · 2022年2月23日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员