Vision-Language Navigation requires the agent to follow natural language instructions to reach a specific target. The large discrepancy between seen and unseen environments makes it challenging for the agent to generalize well. Previous studies propose data augmentation methods to mitigate the data bias explicitly or implicitly and provide improvements in generalization. However, they try to memorize augmented trajectories and ignore the distribution shifts under unseen environments at test time. In this paper, we propose an Unseen Discrepancy Anticipating Vision and Language Navigation (DAVIS) that learns to generalize to unseen environments via encouraging test-time visual consistency. Specifically, we devise: 1) a semi-supervised framework DAVIS that leverages visual consistency signals across similar semantic observations. 2) a two-stage learning procedure that encourages adaptation to test-time distribution. The framework enhances the basic mixture of imitation and reinforcement learning with Momentum Contrast to encourage stable decision-making on similar observations under a joint training stage and a test-time adaptation stage. Extensive experiments show that DAVIS achieves model-agnostic improvement over previous state-of-the-art VLN baselines on R2R and RxR benchmarks. Our source code and data are in supplemental materials.


翻译:视觉语言导航要求代理人遵守自然语言指示,以达到特定的目标。视觉和看不见环境之间的巨大差异使得代理人难以全面概括。以前的研究提出了数据增强方法,以明示或暗示地减少数据偏差,并改进一般化。不过,它们试图将扩大的轨迹进行记忆,忽视试验时在看不见环境中的分布变化。在本文中,我们提议采用一种不见相异的预测愿景和语言导航(DAVIS),通过鼓励测试-时间视觉一致性,学习向看不见环境推广。具体地说,我们设计了:1)半监督的DAVIS框架,利用类似语义观测的视觉一致性信号。2)一个两阶段学习程序,鼓励适应试验-时间分布。这个框架加强了模拟和强化学习的基本结合,鼓励在联合培训阶段和试验-时间适应阶段对类似观测进行稳定决策。广泛的实验显示DAVIS在先前的状态-时间视觉一致性测试-时间一致性方面实现了模型改进。R2和我们数据库中的数据基础是R2和R-R的S补充源。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员