Surface meshes are a favoured domain for representing structural and functional information on the human cortex, but their complex topology and geometry pose significant challenges for deep learning analysis. While Transformers have excelled as domain-agnostic architectures for sequence-to-sequence learning, notably for structures where the translation of the convolution operation is non-trivial, the quadratic cost of the self-attention operation remains an obstacle for many dense prediction tasks. Inspired by some of the latest advances in hierarchical modelling with vision transformers, we introduce the Multiscale Surface Vision Transformer (MS-SiT) as a backbone architecture for surface deep learning. The self-attention mechanism is applied within local-mesh-windows to allow for high-resolution sampling of the underlying data, while a shifted-window strategy improves the sharing of information between windows. Neighbouring patches are successively merged, allowing the MS-SiT to learn hierarchical representations suitable for any prediction task. Results demonstrate that the MS-SiT outperforms existing surface deep learning methods for neonatal phenotyping prediction tasks using the Developing Human Connectome Project (dHCP) dataset. Furthermore, building the MS-SiT backbone into a U-shaped architecture for surface segmentation demonstrates competitive results on cortical parcellation using the UK Biobank (UKB) and manually-annotated MindBoggle datasets. Code and trained models are publicly available at https://github.com/metrics-lab/surface-vision-transformers .


翻译:表面网格是表示人类皮层结构和功能信息的优选领域,但其复杂的拓扑和几何形状对深度学习分析提出了重大挑战。虽然变形器在序列到序列学习方面表现出色,尤其是对于其中卷积操作的平移非平凡时,但自我注意操作的二次成本仍然是许多密集预测任务的障碍。受最新的多尺度模型化,带有视觉变换器的启发,我们引入了多尺度表面视觉变换器(MS-SiT)作为表面深度学习的骨干架构。自我注意机制应用于局部网格窗口中,以允许对底层数据进行高分辨率采样,而移位窗口策略则提高了窗口之间信息共享的效果。相邻的补丁被逐层合并,使得MS-SiT能够学习可适用于任何预测任务的分层表示。结果表明,使用发展中人类连接组学(dHCP)数据集对新生儿表型预测任务进行评估时,MS-SiT的表现优于现有的表面深度学习方法。此外,将MS-SiT骨干架构嵌入到用于表面分割的U型架构中,在UK Biobank (UKB)和手工注释的MindBoggle数据集上展现了竞争性的结果。代码和训练模型公开在 https://github.com/metrics-lab/surface-vision-transformers。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
17+阅读 · 2022年2月23日
VIP会员
相关VIP内容
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员