The contribution of this work is twofold: (1) We introduce a collection of ensemble methods for time series forecasting to combine predictions from base models. We demonstrate insights on the power of ensemble learning for forecasting, showing experiment results on about 16000 openly available datasets, from M4, M5, M3 competitions, as well as FRED (Federal Reserve Economic Data) datasets. Whereas experiments show that ensembles provide a benefit on forecasting results, there is no clear winning ensemble strategy (plus hyperparameter configuration). Thus, in addition, (2), we propose a meta-learning step to choose, for each dataset, the most appropriate ensemble method and their hyperparameter configuration to run based on dataset meta-features.
翻译:这项工作的贡献有两个方面:(1) 我们采用一系列时间序列预测的混合方法,将基数预测结合起来,我们展示了共同学习对预测的影响力的洞察力,展示了从M4、M5、M3竞赛以及FRED(联邦储备经济数据)数据集中大约16 000个公开可得数据集的实验结果,实验显示,组合对预测结果有益处,但没有明确的赢取组合战略(加上超强参数配置),因此,我们提议采取元学习步骤,为每个数据集选择最合适的组合方法及其基于数据集元体的超参数配置。