In this paper, we consider ensemble classifiers, that is, machine learning based classifiers that utilize a combination of scoring functions. We provide a framework for categorizing such classifiers, and we outline several ensemble techniques, discussing how each fits into our framework. From this general introduction, we then pivot to the topic of ensemble learning within the context of malware analysis. We present a brief survey of some of the ensemble techniques that have been used in malware (and related) research. We conclude with an extensive set of experiments, where we apply ensemble techniques to a large and challenging malware dataset. While many of these ensemble techniques have appeared in the malware literature, previously there has been no way to directly compare results such as these, as different datasets and different measures of success are typically used. Our common framework and empirical results are an effort to bring some sense of order to the chaos that is evident in the evolving field of ensemble learning -- both within the narrow confines of the malware analysis problem, and in the larger realm of machine learning in general.


翻译:在本文中,我们考虑混合分类方法,即使用各种评分功能组合的基于机械学习的分类方法。我们为这类分类方法分类提供了框架,我们概述了几种混合技术,讨论每种技术如何适合我们的框架。从这一一般性导言,我们然后在恶意软件分析的范围内将注意力集中在共同学习的主题上。我们简要调查了在恶意软件(和相关)研究中使用的一些混合技术。我们最后进行了一系列广泛的实验,我们将共同技术应用于一个庞大和具有挑战性的恶意软件数据集。虽然许多这些共同技术出现在恶意软件文献中,但以前没有办法直接比较这些结果,因为通常使用不同的数据集和不同的成功衡量标准。我们的共同框架和经验结果是为了给在不断演变的恶意软件分析问题的狭义范围内和在一般的机器学习的更大范围内表现出来的混乱带来某种秩序感。

0
下载
关闭预览

相关内容

集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
115+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【基础】集成学习 (Ensemble Learning)
深度学习自然语言处理
4+阅读 · 2020年2月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
18+阅读 · 2019年1月16日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
【基础】集成学习 (Ensemble Learning)
深度学习自然语言处理
4+阅读 · 2020年2月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
49+阅读 · 2021年5月9日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
18+阅读 · 2019年1月16日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员