Reasoning about code and explaining its purpose are fundamental skills for computer scientists. There has been extensive research in the field of computing education on the relationship between a student's ability to explain code and other skills such as writing and tracing code. In particular, the ability to describe at a high-level of abstraction how code will behave over all possible inputs correlates strongly with code writing skills. However, developing the expertise to comprehend and explain code accurately and succinctly is a challenge for many students. Existing pedagogical approaches that scaffold the ability to explain code, such as producing exemplar code explanations on demand, do not currently scale well to large classrooms. The recent emergence of powerful large language models (LLMs) may offer a solution. In this paper, we explore the potential of LLMs in generating explanations that can serve as examples to scaffold students' ability to understand and explain code. To evaluate LLM-created explanations, we compare them with explanations created by students in a large course ($n \approx 1000$) with respect to accuracy, understandability and length. We find that LLM-created explanations, which can be produced automatically on demand, are rated as being significantly easier to understand and more accurate summaries of code than student-created explanations. We discuss the significance of this finding, and suggest how such models can be incorporated into introductory programming education.


翻译:比较学生和大型语言模型创建的代码解释

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【2023新书】分布测试的主题和技术,163页pdf
专知会员服务
15+阅读 · 2023年1月19日
【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【机器视觉】计算机视觉研究入门全指南
产业智能官
11+阅读 · 2018年9月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Large Language Models
Arxiv
398+阅读 · 2023年3月31日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员