A filtered Lie splitting scheme is proposed for the time integration of the cubic nonlinear Schr\"odinger equation on the two-dimensional torus $\mathbb{T}^2$. The scheme is analyzed in a framework of discrete Bourgain spaces, which allows us to consider initial data with low regularity; more precisely initial data in $H^s(\mathbb{T}^2)$ with $s>0$. In this way, the usual stability restriction to smooth Sobolev spaces with index $s>1$ is overcome. Rates of convergence of order $\tau^{s/2}$ in $L^2(\mathbb{T}^2)$ at this regularity level are proved. Numerical examples illustrate that these convergence results are sharp.
翻译:提出了一个过滤式的谎言分割方案, 用于二维立方体的非线性 Schr\\'odinger 方程式的时间整合 $\ mathbb{T\\\\\\\\\\\\\\\\\\\\\2$。 这个方案是在离散的Bourgain空间的框架内分析的, 从而使我们能够考虑初步数据的规律性低; 更精确的初始数据为$Hs(\\mathbb{T\\\2) $ > 0美元。 这样, 以 > $ > 1 的指数平滑 Sobolev 空间的常规稳定性限制已被克服 。 在这个常规级别上, $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\ $ \\\\\\ \ \ \ \ \\\ \\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \