We design and compute first-order implicit-in-time variational schemes with high-order spatial discretization for initial value gradient flows in generalized optimal transport metric spaces. We first review some examples of gradient flows in generalized optimal transport spaces from the Onsager principle. We then use a one-step time relaxation optimization problem for time-implicit schemes, namely generalized Jordan-Kinderlehrer-Otto schemes. Their minimizing systems satisfy implicit-in-time schemes for initial value gradient flows with first-order time accuracy. We adopt the first-order optimization scheme ALG2 (Augmented Lagrangian method) and high-order finite element methods in spatial discretization to compute the one-step optimization problem. This allows us to derive the implicit-in-time update of initial value gradient flows iteratively. We remark that the iteration in ALG2 has a simple-to-implement point-wise update based on optimal transport and Onsager's activation functions. The proposed method is unconditionally stable for convex cases. Numerical examples are presented to demonstrate the effectiveness of the methods in two-dimensional PDEs, including Wasserstein gradient flows, Fisher--Kolmogorov-Petrovskii-Piskunov equation, and two and four species reversible reaction-diffusion systems.
翻译:我们设计并计算一阶隐含时间变化计划,对通用最佳运输指标空间的初始价值梯度流动采用高度空间分流空间偏差计划ALG2(推荐拉格兰杰方法)和空间分解中高阶有限元素方法,以计算一阶最佳运输空间的梯度流动。我们首先从Onsager原则中审查一些在通用最佳运输空间的梯度流动实例。我们然后对时间隐含计划使用一次性的放松优化问题,即通用的约旦-Kinderle Heir-Ottto计划。它们的最小化系统满足初始价值梯度流动的隐含时间计划,并具有一级时间准确性。我们采用了第一级优化计划ALG2(推荐拉格兰杰方法)和空间分流中高阶有限元素方法,以计算一阶优化问题。这使我们能够对初始价值梯度流动进行隐含时间更新,反复进行。我们说,ALG2的循环系统基于最佳运输和Onsager的激活功能进行简单到执行点更新。拟议方法对于 convex案来说是无条件稳定的。大量例子,以展示PDE-PDE-Prov-stov-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stol-stal-stal-stal-stol-stal-stal-st-smvers系统方法的有效性流的两种系统方法的有效性。</s>