We design and compute first-order implicit-in-time variational schemes with high-order spatial discretization for initial value gradient flows in generalized optimal transport metric spaces. We first review some examples of gradient flows in generalized optimal transport spaces from the Onsager principle. We then use a one-step time relaxation optimization problem for time-implicit schemes, namely generalized Jordan-Kinderlehrer-Otto schemes. Their minimizing systems satisfy implicit-in-time schemes for initial value gradient flows with first-order time accuracy. We adopt the first-order optimization scheme ALG2 (Augmented Lagrangian method) and high-order finite element methods in spatial discretization to compute the one-step optimization problem. This allows us to derive the implicit-in-time update of initial value gradient flows iteratively. We remark that the iteration in ALG2 has a simple-to-implement point-wise update based on optimal transport and Onsager's activation functions. The proposed method is unconditionally stable for convex cases. Numerical examples are presented to demonstrate the effectiveness of the methods in two-dimensional PDEs, including Wasserstein gradient flows, Fisher--Kolmogorov-Petrovskii-Piskunov equation, and two and four species reversible reaction-diffusion systems.


翻译:我们设计并计算一阶隐含时间变化计划,对通用最佳运输指标空间的初始价值梯度流动采用高度空间分流空间偏差计划ALG2(推荐拉格兰杰方法)和空间分解中高阶有限元素方法,以计算一阶最佳运输空间的梯度流动。我们首先从Onsager原则中审查一些在通用最佳运输空间的梯度流动实例。我们然后对时间隐含计划使用一次性的放松优化问题,即通用的约旦-Kinderle Heir-Ottto计划。它们的最小化系统满足初始价值梯度流动的隐含时间计划,并具有一级时间准确性。我们采用了第一级优化计划ALG2(推荐拉格兰杰方法)和空间分流中高阶有限元素方法,以计算一阶优化问题。这使我们能够对初始价值梯度流动进行隐含时间更新,反复进行。我们说,ALG2的循环系统基于最佳运输和Onsager的激活功能进行简单到执行点更新。拟议方法对于 convex案来说是无条件稳定的。大量例子,以展示PDE-PDE-Prov-stov-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stol-stal-stal-stal-stol-stal-stal-st-smvers系统方法的有效性流的两种系统方法的有效性。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员