We present NeuSE, a novel Neural SE(3)-Equivariant Embedding for objects, and illustrate how it supports object SLAM for consistent spatial understanding with long-term scene changes. NeuSE is a set of latent object embeddings created from partial object observations. It serves as a compact point cloud surrogate for complete object models, encoding full shape information while transforming SE(3)-equivariantly in tandem with the object in the physical world. With NeuSE, relative frame transforms can be directly derived from inferred latent codes. Our proposed SLAM paradigm, using NeuSE for object shape and pose characterization, can operate independently or in conjunction with typical SLAM systems. It directly infers SE(3) camera pose constraints that are compatible with general SLAM pose graph optimization, while also maintaining a lightweight object-centric map that adapts to real-world changes. Our approach is evaluated on synthetic and real-world sequences featuring changed objects and shows improved localization accuracy and change-aware mapping capability, when working either standalone or jointly with a common SLAM pipeline.
翻译:我们展示了新颖的天体神经 SE(3)- QQQ 嵌入系统NeuseSE, 并演示它如何支持天体SLM 与长期场景变化保持一致的空间理解。 Neuse是部分天体观测产生的一组潜在天体嵌入器。它作为完整天体模型的紧凑点云代替器,将完整的形状信息编码,同时在物理世界中与天体同步转换 SE(3)- EQQVI 。与 NeuseSE, 相对框架变换可以直接从推断的潜值代码中得出。我们提议的SLAM 模式,利用 NeuseSE进行物体形状和形状定性,可以独立运作或与典型的 SLAM 系统结合操作。 它直接推断 SE(3) 相机具有与一般的 SLM 图形优化兼容的限制, 同时保持一个轻量的物体中心地图,以适应现实世界的变化。我们的方法是在合成和现实世界序列上评估以改变天体为对象的物体,并显示更高的本地化精度和变化测量能力, 当独立或与共同的 SLM 管道一起工作时, 。</s>