A code $\mathcal{C} \subseteq \{0, 1, 2\}^n$ is said to be trifferent with length $n$ when for any three distinct elements of $\mathcal{C}$ there exists a coordinate in which they all differ. Defining $\mathcal{T}(n)$ as the maximum cardinality of trifferent codes with length $n$, $\mathcal{T}(n)$ is unknown for $n \ge 5$. In this note, we use an optimized search algorithm to show that $\mathcal{T}(5) = 10$ and $\mathcal{T}(6) = 13$.
翻译:$\ mathcal{C} 代码 $\ subseteq = 0, 1, 2 ⁇ n$ 据说是长度为n$n的三重值三重值三重值的三重值三重值三重值的三重值 $mathcal{T} (n) 。 在本说明中, 我们使用优化搜索算法来显示$\ mathcal{T} (5) = 10$ 和 $\ mathcal{T} (6) = 13$ 。