Image inpainting is an old problem in computer vision that restores occluded regions and completes damaged images. In the case of facial image inpainting, most of the methods generate only one result for each masked image, even though there are other reasonable possibilities. To prevent any potential biases and unnatural constraints stemming from generating only one image, we propose a novel framework for diverse facial inpainting exploiting the embedding space of StyleGAN. Our framework employs pSp encoder and SeFa algorithm to identify semantic components of the StyleGAN embeddings and feed them into our proposed SPARN decoder that adopts region normalization for plausible inpainting. We demonstrate that our proposed method outperforms several state-of-the-art methods.
翻译:图像油漆是计算机视觉中的一个老问题,它恢复了隐蔽的区域,并完整了受损的图像。在面部图像油漆方面,大多数方法只为每个蒙面图像产生一个结果,尽管有其他合理的可能性。为了防止仅仅产生一个图像而产生任何潜在的偏向和非自然限制,我们提议了一个新的框架,用于利用StyleGAN的嵌入空间进行不同的面部油漆。我们的框架使用pSp编码器和Sefa算法来识别StyleGAN嵌入的语义组成部分,并将其输入我们提议的SPARN解码器,该解码器将区域正常化作为可信的油漆。我们证明我们所提议的方法优于几种最先进的方法。