Recently, a surge of high-quality 3D-aware GANs have been proposed, which leverage the generative power of neural rendering. It is natural to associate 3D GANs with GAN inversion methods to project a real image into the generator's latent space, allowing free-view consistent synthesis and editing, referred as 3D GAN inversion. Although with the facial prior preserved in pre-trained 3D GANs, reconstructing a 3D portrait with only one monocular image is still an ill-pose problem. The straightforward application of 2D GAN inversion methods focuses on texture similarity only while ignoring the correctness of 3D geometry shapes. It may raise geometry collapse effects, especially when reconstructing a side face under an extreme pose. Besides, the synthetic results in novel views are prone to be blurry. In this work, we propose a novel method to promote 3D GAN inversion by introducing facial symmetry prior. We design a pipeline and constraints to make full use of the pseudo auxiliary view obtained via image flipping, which helps obtain a robust and reasonable geometry shape during the inversion process. To enhance texture fidelity in unobserved viewpoints, pseudo labels from depth-guided 3D warping can provide extra supervision. We design constraints aimed at filtering out conflict areas for optimization in asymmetric situations. Comprehensive quantitative and qualitative evaluations on image reconstruction and editing demonstrate the superiority of our method.
翻译:最近,提出了高品质的 3D 显示 GAN 激增的3D GAN 提议, 利用神经转换的基因能力。 将 3D GAN 与 GAN 转换方法联系起来, 将一个真实图像投射到发电机的潜层, 允许自由查看一致的合成和编辑, 称为 3D GAN 转换。 虽然在经过预先训练的 3D GAN 中, 面部先前被保留在3D 3D 图像中, 重建一个仅用一个单眼图像的 3D 肖像仍然是一个问题。 直接应用 2D GAN 转换方法只注重质谱相似性, 而忽略了 3D 几何测量形状的正确性。 这自然会提高几何性崩溃效应, 特别是当重建侧面时, 在极端的外观下, 合成结果容易模糊不清。 在这项工作中, 我们提出了一种创新的方法, 通过引入面部相对称之前, 来推广 3D GAN 3 的3 。 我们设计了一个管道和限制, 充分利用通过图像翻版获得的虚拟辅助视图, 有助于在全面、 进行精确和合理地对等的模拟的图像的图像上, 在深度的图像上, 在重新定位中, 进行不精确的模拟的模拟的模拟的校正正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校制 。</s>