项目名称: 基于光纤延迟线环和光栅的智能光子射频存储器

项目编号: No.61501205

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 王旭东

作者单位: 暨南大学

项目金额: 23万元

中文摘要: 在电子对抗中,射频存储器被用来将接收到的雷达脉冲信号进行存储,这不仅需要精确控制存储雷达脉冲信号的时间,还要保证存储雷达脉冲信号的保真度并将其发射回去。通过精确控制雷达脉冲信号的存储时间及发射时间,干扰发射机可以欺骗敌方雷达,使我方成为敌方的伪目标,大大增加我方的生存空间。然而,传统的射频存储器技术很难存储一个复杂的高频雷达脉冲信号,例如目前的电子数字射频存储器,其瞬时带宽只有1~2GHz,动态范围只有大概60dBc。将微波光子信号处理技术应用在射频存储器上,可大大增加存储器的瞬时带宽和动态范围。本项目将研究新型智能光子射频存储器,着重解决光子射频存储器的射频脉冲光开关和自动清零功能,这将对我国国防具有重要意义。

中文关键词: 光子射频存储器;微波光子处理器;光纤延迟环;光栅;射频存储器

英文摘要: RF memory is used to store the received radar pulses for electronic countermeasure applications. It requires carefully controlling the storage time and retransmitting the threat radar RF pulse. By memorizing the radar incident RF pulse and retransmitting it at a carefully controlled time, the jammer is able to deceive the threat radar, which makes our side to be a fake target and enhance our survival time. However, it is particularly difficult for the traditional technique to store complex-waveform radar pulses at high frequencies. For example, current electronic digital RF memories are restricted to an instantaneous bandwidth of only 1 to 2 GHz and a dynamic range of around 60 dBc. Microwave photonic signal processing technique can be a solution for the RF memory, which can increase the instantaneous bandwidth and the dynamic range. This project will focus on a new intelligent photonic RF memory technique, which has the functions of RF triggering optical switch and automatic clear zero inside the fiber optic recirculating delay line. This has the significance for the defense in our country.

英文关键词: Photonic RF memory;Microwave photonic signal processor;Fiber optic recirculating delay line;FBG;RF memory

成为VIP会员查看完整内容
0

相关内容

无人机地理空间情报在智能化海战中的应用
专知会员服务
119+阅读 · 2022年4月14日
6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
专知会员服务
44+阅读 · 2021年7月6日
持续学习最新综述论文,29页pdf
专知会员服务
118+阅读 · 2021年4月22日
应用知识图谱的推荐方法与系统
专知会员服务
116+阅读 · 2020年11月23日
专知会员服务
22+阅读 · 2020年9月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
【无人机】无人机的自主与智能控制
产业智能官
48+阅读 · 2017年11月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
无人机地理空间情报在智能化海战中的应用
专知会员服务
119+阅读 · 2022年4月14日
6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
专知会员服务
44+阅读 · 2021年7月6日
持续学习最新综述论文,29页pdf
专知会员服务
118+阅读 · 2021年4月22日
应用知识图谱的推荐方法与系统
专知会员服务
116+阅读 · 2020年11月23日
专知会员服务
22+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员