Adversarial training is an effective but time-consuming way to train robust deep neural networks that can withstand strong adversarial attacks. As a response to its inefficiency, we propose Dynamic Efficient Adversarial Training (DEAT), which gradually increases the adversarial iteration during training. We demonstrate that the gradient's magnitude correlates with the curvature of the trained model's loss landscape, allowing it to reflect the effect of adversarial training. Therefore, based on the magnitude of the gradient, we propose a general acceleration strategy, M+ acceleration, which enables an automatic and highly effective method of adjusting the training procedure. M+ acceleration is computationally efficient and easy to implement. It is suited for DEAT and compatible with the majority of existing adversarial training techniques. Extensive experiments have been done on CIFAR-10 and ImageNet datasets with various training environments. The results show that the proposed M+ acceleration significantly improves the training efficiency of existing adversarial training methods while achieving similar robustness performance. This demonstrates that the strategy is highly adaptive and offers a valuable solution for automatic adversarial training.


翻译:反向培训是一种有效但耗时的方法,用于培训能够抵御强烈对抗性攻击的强大深神经网络。我们提议,作为对低效率的回应,进行动态高效反向培训,逐步增加培训期间的对抗性迭代。我们证明,梯度与所培训模型损失场景的曲线相关,使其能反映对抗性培训的效果。因此,根据梯度的大小,我们提议了一个总体加速战略,即M+加速,使培训程序的调整自动和高度有效。M+加速具有计算效率,易于实施。它适合DEAT,并且与现有的对抗性培训技术的大多数兼容。已经对CIFAR-10和图像网络数据组进行了广泛的实验,与各种培训环境相适应。结果显示,拟议的M+加速大大提高了现有对抗性培训方法的培训效率,同时取得了类似的稳健性业绩。这表明,该战略具有高度的适应性,为自动对抗性培训提供了宝贵的解决办法。</s>

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员