项目名称: 纤维增强型复合材料中拼接结构力学性能的多尺度分析
项目编号: No.51503223
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 一般工业技术
项目作者: 陈丁丁
作者单位: 中国人民解放军国防科技大学
项目金额: 20万元
中文摘要: 由于纤维增强复合材料(FRP)具有高强度、低密度等优良特性,目前已越来越广泛地应用到生产生活的各个方面,并且复合材料结构越来越大型化。当复合材料结构的尺寸越来越大的时候,就不得不面对增强体材料宽度甚至是长度不够而需要采取铺层拼接来满足构件尺寸的情况。拼接结构的引入必然会对构件的力学性能产生影响。本项目将对单向碳纤维增强树脂基复合材料(CFRP)中的拼接结构在拉伸和弯曲作用下的力学性能展开研究。从微观、细观和宏观三个层面分析拼接结构力学性能的影响因素。将采用数字图像相关技术(DIC)对结构受力过程中的应变分布情况进行测量,并采用声发射探测技术(AE)对材料损伤过程进行监测,结合数值模拟研究从结构细观以及宏观受力情况分析结构在各因素影响下的载荷传递及损伤演化机理,基于实验和数值模拟结果构建强度模型,为拼接结构的设计、性能计算与评估提供研究基础和技术支撑。
中文关键词: 碳纤维复合材料;铺层拼接;多尺度分析;应变分布;破坏模式
英文摘要: Due to high strength and low density, fiber reinforced plastics (FRP) have been used widely, and FRP structures with large size are required by more and more applications. When the FRP structure becomes large, only one reinforcement ply may not large enough. In this case, it is required to splice two or more plies to meet the size requirement. However, the ply splice structure will play like a defect in a FRP structure and decrease the mechanical property. In order to use the FRP product with ply splice structures safely, it is necessary to master its mechanical properties. In this project, we will study the mechanical properties of ply splice structures in unidirectional carbon fiber reinforced plastics (CFRP) under tensile and flexural loadings. Factors affecting the property of this structure in the scale from micro to macro levels will be studied. For studying the force transmission and failure mechanism of this structure, digital image correlation (DIC) technique will be used to measure the strain distribution of the structure under loadings, acoustic emission (AE) technique will be adopted to analyze the fracture mode during the failure process, and simulation work will be done to analyze the stress state in meso and macro scales inside the material. Finally a model to describe the relationship between the factors in different scales and the strength of ply splice structures will be constructed based on the experimental and simulation works.
英文关键词: carbon fiber reinforced composites;ply splice;multiscale analysis;strain distribution;fracture mode